
Introduction
How DSO Clustering Works
Platform Concepts
Hello Clustered World
Setup and Configuration
Planning for a Clustered App
Configuring Terracotta DSO
Configuration Reference
Installation
APIs
Using Annotations
Cluster Events
Data Locality Methods
Distributed Cache
Clustered Async Data Processing
Tool Guides
Developer Console
Operations Center
tim-get (TIM Management Tool)
Platform Statistics Recorder
Eclipse Plugin
Sessions Configurator
Clustering Spring Webapp with Sessions
Configurator
Maven
JMX
Testing, Tuning, and Deployment
Top 5 Tuning Tips
Testing a Clustered App
Tuning a Clustered App
Deployment Guide
Operations Guide
FAQs and Troubleshooting
General FAQ
DSO Technical FAQ
Troubleshooting Guide
Gotchas
Non-portable Classes
Reference
Migrating From DSO
Concept and Architecture Guide
Examinator Reference Application
Clustered Data Structures Guide
Integrating Terracotta DSO
Clustering Spring Framework
Integration Modules Manual
AspectWerkz Pattern Language
Glossary

Terracotta Integration Modules Manual

Terracotta Integration Modules Manual
Before you start
Introduction
Integration Module Versioning
Create Your Own Terracotta Integration Module
Procedure Using the Maven TIM Archetype
Manual Procedure
terracotta.xml
META-INF/MANIFEST.MF
Using Your TIM
Using a TIM to Replace a Shared Class
Additional Reading

Before you start

Questions? Find answers, insights, and inspiration at the .Terracotta forums

Promote your integration project to an official Terracotta project at the and learn Terracotta Forge
about becoming a .contributor

Share your integration project with a of Terracotta DSO users.community

Introduction

Terracotta Integration Modules (TIMs) are sets of configuration elements and supporting Java
classes packaged together as a single, includable module within the Terracotta configuration. A
TIM allows you to integrate Terracotta DSO with the framework or platform that your application is
based on.

The catalog of available TIMs continues to grow as new technologies are integrated with
Terracotta DSO. Community-developed TIMs are also being added. For the complete list of
currently supported modules, see the Terracotta Forge at .http://forge.terracotta.org

If a TIM isn't available for your environment, this document shows you how to build one.

Integration Module Versioning

Versioning a TIM to fit with the Terracotta development scheme is crucial for a smooth integration
path. The Terracotta development scheme takes the Apache Maven approach of appending "SNAPSHOT" to build versions still in flux. A typical TIM
filename looks like the following:

clustered-hibernate-3.2.5-2.6.0.jar

where a descriptive name (clustered-hibernate) is followed by the named application's version (3.2.5), and finally the TIM version (2.6.0).

About Terracotta Documentation

This documentation is about Terracotta DSO, an advanced distributed-computing technology aimed at meeting special clustering requirements.

Terracotta products without the overhead and complexity of DSO meet the needs of almost all use cases and clustering requirements. To learn
how to migrate from Terracotta DSO to standard Terracotta products, see . To find documentation on non-DSO Migrating From Terracotta DSO
(standard) Terracotta products, see . Terracotta release information, such as release notes and platform compatibility, Terracotta Documentation
is found in .Product Information

While a Terracotta configuration file resides with a Terracotta server instance, TIMs are never
installed on Terracotta server instances. This is because applications are never integrated with
Terracotta server instances, only with Terracotta clients. Terracotta clients get their TIM
configurations when they fetch the Terracotta configuration file from a Terracotta server
instance or by having their own Terracotta configuration files.

While there are many approaches and tools that could be used to design and build a TIM, we
recommend Apache Maven. Except as noted below, this document focuses on using Maven2
for managing a TIM project.

https://confluence.terracotta.org/display/docs/How+DSO+Clustering+Works
https://confluence.terracotta.org/display/docs/Platform+Concepts
https://confluence.terracotta.org/display/docs/Hello+Clustered+World
https://confluence.terracotta.org/display/docs/Planning+for+a+Clustered+Application
https://confluence.terracotta.org/display/docs/Configuring+DSO
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference
http://www.terracotta.org/documentation/dso-install.html
https://confluence.terracotta.org/display/docs/Annotations+for+DSO
https://confluence.terracotta.org/display/docs/Cluster+Events
https://confluence.terracotta.org/display/docs/Data+Locality+API
https://confluence.terracotta.org/display/docs/Terracotta+Distributed+Cache
https://confluence.terracotta.org/display/docs/DSO+Async+Processing
https://confluence.terracotta.org/display/docs/Terracotta+Developer+Console
https://confluence.terracotta.org/display/docs/Terracotta+Operations+Center
https://confluence.terracotta.org/display/docs/tim-get
https://confluence.terracotta.org/display/docs/Platform+Statistics+Recorder+Guide
https://confluence.terracotta.org/display/docs/DSO+Eclipse+Plugin+Guide
https://confluence.terracotta.org/display/docs/Sessions+Configurator+Guide
https://confluence.terracotta.org/display/docs/Sessions+Tutorial
https://confluence.terracotta.org/display/docs/Sessions+Tutorial
https://confluence.terracotta.org/display/docs/Maven
https://confluence.terracotta.org/display/docs/JMX+Guide
https://confluence.terracotta.org/display/docs/Top+Five+Tuning+Tips
https://confluence.terracotta.org/display/docs/Testing+Terracotta
https://confluence.terracotta.org/display/docs/DSO+Tuning+Guide
https://confluence.terracotta.org/display/docs/Deployment+Guide
https://confluence.terracotta.org/display/docs/Operations+Guide
https://confluence.terracotta.org/display/release/FAQ
https://confluence.terracotta.org/display/docs/DSO+Technical+FAQ
https://confluence.terracotta.org/display/docs/Troubleshooting+Guide
https://confluence.terracotta.org/display/docs/Gotchas
https://confluence.terracotta.org/display/docs/Non-Portable+Classes
https://confluence.terracotta.org/display/docs/Migrating+From+Terracotta+DSO
https://confluence.terracotta.org/display/docs/Concept+and+Architecture+Guide
https://confluence.terracotta.org/display/docs/Web+App+Reference+Implementation
https://confluence.terracotta.org/display/docs/DSO+Data+Structures+Guide
https://confluence.terracotta.org/display/docs/Integrating+Terracotta+DSO
https://confluence.terracotta.org/display/docs/Clustering+the+Spring+Framework
https://confluence.terracotta.org/display/docs/AspectWerkz+Pattern+Language
https://confluence.terracotta.org/display/docs/Glossary
http://forums.terracotta.org/forums/forums/list.page
http://forge.terracotta.org
http://www.terracotta.org/confluence/display/devdocs/How+To+Become+A+Contributor
http://www.terracotta.org/confluence/display/wiki/Home
http://forge.terracotta.org
https://confluence.terracotta.org/display/docs/Migrating+From+Terracotta+DSO
http://terracotta.org/documentation
https://confluence.terracotta.org/display/release/Home

1.
2.

3.
4.

5.

1.
2.

3.
4.

5.

To facilitate a consistent and functional version-control process, an official management policy for TIM publishing is in place. If you pursue creating and
publishing a TIM, follow these guidelines:

There is a single Maven2 repository that hosts both releases and snapshots – using it is strongly recommended.
Whenever a change is made to a TIM, the version number must be incremented as appropriate, in the file for the module and both MANIFEST.MF
the module's own .pom.xml
A TIM must remain a version until it becomes an official release.-SNAPSHOT
If a TIM depends on versions of other integration modules, then the dependencies for that TIM must explicitly declare those versions.-SNAPSHOT
A released TIM cannot depend on versions of other integration modules.-SNAPSHOT
At product release time, TIMs are blessed as release versions with an incremented version number.
Release versions of all current TIMs must be published to the Terracotta Maven repository.

Create Your Own Terracotta Integration Module

TIMs are very similar to bundles or plugins. Logically, a TIM is a specification loaded at runtime that tells the Terracotta software how to OSGi Eclipse
instrument certain Java objects. Structurally, a TIM is a file with special headers in the manifest. While a TIM can contain code that modifies bytecode jar
directly, normally it's nothing more than an XML file containing a subtree of the file.tc-config.xml

To meet Terracotta integration specification, the TIM requires at least one of the following:

a) A file (located in the root of the)terracotta.xml jar
b) An OSGi BundleActivator

Case b) supports a special use case where custom bytecode manipulation is required. Case b) is not likely to be encountered and is not covered here.

You can build your TIM using Apache Maven and the Maven TIM archetype, or manually. The procedures for each of these methods are given below.

Procedure Using the Maven TIM Archetype

This procedure assumes that you have Maven installed and are familiar with Maven projects.

Download and install the .Maven TIM archetype
Generate a Maven TIM project archetype by following instructions.these
Generating the project creates the necessary directory structure, a stub configuration file, a manifest file, and a Maven .pom.xml
that you can use to build the integration module jar.
Edit to support the library or framework your TIM is intended for.terracotta.xml
See for details.terracotta.xml
Add the appropriate headers to the file.MANIFEST.MF
See for details.MANIFEST.MF

Manual Procedure

Create a .terracotta.xml
Edit to support the library or framework your TIM is intended for.terracotta.xml
See for details.terracotta.xml
Create a manifest file called .jar MANIFEST.MF
Add the appropriate headers to the file.MANIFEST.MF
See for details.MANIFEST.MF
Package the and files into a file.terrracotta.xml MANIFEST.MF jar
For example:

jar cvfm MyApp-cluster-config-1.0-1.0.0-SNAPSHOT.jar META-INF/MANIFEST.MF terracotta.xml

Be sure to name your file using conventions that facilitate your integration project. See the versioning guidelines above and these jar usage
 for more information.guidelines

terracotta.xml

The file contains a subtree of the element of the file, wrapped in an terracotta.xml application/dso <tc-config.xml> <xml-fragment>
element. If the content of your file is similar to the following:tc-config.xml

Java code vs. terracotta.xml

If your project requires using a and you need help, post a question on the .BundleActivator developer mailing list

For either procedure, be sure you are familiar with Terracotta DSO and have a working file.tc-config.xml

http://www.osgi.org/
http://www.eclipse.org/
http://www.osgi.org/
http://forge.terracotta.org/releases/projects/tim-archetype/docs/installation.html
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference#ConfigurationGuideandReference-ConfigurationModules
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference#ConfigurationGuideandReference-ConfigurationModules
http://www.terracotta.org/confluence/display/wiki/Mailing+Lists

<tc:tc-config xmlns:tc="http://www.terracotta.org/config">
 <!-- ...stuff... -->
 <application>
 <dso>
 <instrumented-classes>
 <!-- ...other stuff... -->
 </instrumented-classes>
 <locks>
 <!-- ...yet more stuff... -->
 </locks>
 </dso>
 </application>
 <!-- ...trailing stuff... -->
</tc:tc-config>

then the content of your file should be similar to the following:terracotta.xml

<xml-fragment>
 <instrumented-classes>
 <!-- ...other stuff... -->
 </instrumented-classes>
 <locks>
 <!-- ...yet more stuff... -->
 </locks>
</xml-fragment>

META-INF/MANIFEST.MF

The manifest file has one required header: . Optional headers can be added to make the manifest file more useful.OSGi Bundle-SymbolicName

The following is an example of set of headers in a file:MANIFEST.MF

Bundle-Description: MyApp/MyFramework Cluster Configuration
Bundle-DocURL: http://www.myorg.org/doc/terracotta-integration-module/
Bundle-Name: Terracotta integration module for MyApp/MyFramework
Bundle-SymbolicName: org.myorg.myapp.integration_module
Bundle-Vendor: MyOrg, Inc.
Bundle-Version: 1.0

See the R4 documentation for more information on headers. offers a manifest editor that makes it easier to work with manifest files.OSGi Eclipse

Using Your TIM

To use your TIM, save the TIM file to a module repository and add the following element to clients/modules in your file:jar tc-config.xml

<module name="MyApp-cluster-config" version="1.0"/>

Adding this element effectively embeds the in .terracotta.xml tc-config.xml

See these for a more detailed procedure.usage guidelines

Generate TIM Manifest using Terracotta Maven Plugin

If Maven is used to build the TIM project, the TIM manifest file can be generated using the .Maven Plugin for Terracotta

Module Versions Are Optional

Since the tim-get script finds the optimal version for the current installation of the Terracotta kit, module versions are optional.

http://www.osgi.org/
http://www.osgi.org/
http://www.eclipse.org/
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference#ConfigurationGuideandReference-ConfigurationModules
http://forge.terracotta.org/releases/projects/tc-maven-plugin/manifest-mojo.html

Using a TIM to Replace a Shared Class

Under certain circumstances, you may want to replace a class with your own version. This can be done using a TIM. The TIM's contents should be similar
to the following:

public class FooModule extends TerracottaConfiguratorModule {
 protected void addInstrumentation(BundleContext context) {
 super.addInstrumentation(context);
 Bundle bundle = getExportedBundle(context, "org.foo.tim-foo");
 addClassReplacement(bundle, "org.foo.Impl", "org.foo.ClusteredImpl");
 }
 }

where:

FooModule is the class name of the TIM.
org.foo.Impl is the class to replace.
org.foo.ClusteredImpl is the new class.
org.foo.tim-foo is the value of the TIM's manifest header. For example, the ehcache-1.3 TIM has the Bundle-SymbolicName Bundle-

 manifest header .SymbolicName org.terracotta.modules.clustered-ehcache-1.3

Additional Reading

See on using the TIM archetype.Juris Galang's blog entry

http://www.jurisgalang.com/articles/read/tim_archetype

	Terracotta Integration Modules Manual

