
Introduction
How DSO Clustering Works
Platform Concepts
Hello Clustered World
Setup and Configuration
Planning for a Clustered App
Configuring Terracotta DSO
Configuration Reference
Installation
APIs
Using Annotations
Cluster Events
Data Locality Methods
Distributed Cache
Clustered Async Data Processing
Tool Guides
Developer Console
Operations Center
tim-get (TIM Management Tool)
Platform Statistics Recorder
Eclipse Plugin
Sessions Configurator
Clustering Spring Webapp with Sessions
Configurator
Maven
JMX
Testing, Tuning, and Deployment
Top 5 Tuning Tips
Testing a Clustered App
Tuning a Clustered App
Deployment Guide
Operations Guide
FAQs and Troubleshooting
General FAQ
DSO Technical FAQ
Troubleshooting Guide
Gotchas
Non-portable Classes
Reference
Migrating From DSO
Concept and Architecture Guide
Examinator Reference Application
Clustered Data Structures Guide
Integrating Terracotta DSO
Clustering Spring Framework
Integration Modules Manual
AspectWerkz Pattern Language
Glossary

Terracotta Distributed Cache

Release: 3.6
Publish Date: November, 2011 Documentation Archive »

About Terracotta Documentation

This documentation is about Terracotta DSO, an advanced distributed-computing technology aimed at meeting special clustering requirements.

Terracotta products without the overhead and complexity of DSO meet the needs of almost all use cases and clustering requirements. To learn
how to migrate from Terracotta DSO to standard Terracotta products, see . To find documentation on non-DSO Migrating From Terracotta DSO
(standard) Terracotta products, see . Terracotta release information, such as release notes and platform compatibility, Terracotta Documentation
is found in .Product Information

https://confluence.terracotta.org/display/docs/How+DSO+Clustering+Works
https://confluence.terracotta.org/display/docs/Platform+Concepts
https://confluence.terracotta.org/display/docs/Hello+Clustered+World
https://confluence.terracotta.org/display/docs/Planning+for+a+Clustered+Application
https://confluence.terracotta.org/display/docs/Configuring+DSO
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference
http://www.terracotta.org/documentation/dso-install.html
https://confluence.terracotta.org/display/docs/Annotations+for+DSO
https://confluence.terracotta.org/display/docs/Cluster+Events
https://confluence.terracotta.org/display/docs/Data+Locality+API
https://confluence.terracotta.org/display/docs/DSO+Async+Processing
https://confluence.terracotta.org/display/docs/Terracotta+Developer+Console
https://confluence.terracotta.org/display/docs/Terracotta+Operations+Center
https://confluence.terracotta.org/display/docs/tim-get
https://confluence.terracotta.org/display/docs/Platform+Statistics+Recorder+Guide
https://confluence.terracotta.org/display/docs/DSO+Eclipse+Plugin+Guide
https://confluence.terracotta.org/display/docs/Sessions+Configurator+Guide
https://confluence.terracotta.org/display/docs/Sessions+Tutorial
https://confluence.terracotta.org/display/docs/Sessions+Tutorial
https://confluence.terracotta.org/display/docs/Maven
https://confluence.terracotta.org/display/docs/JMX+Guide
https://confluence.terracotta.org/display/docs/Top+Five+Tuning+Tips
https://confluence.terracotta.org/display/docs/Testing+Terracotta
https://confluence.terracotta.org/display/docs/DSO+Tuning+Guide
https://confluence.terracotta.org/display/docs/Deployment+Guide
https://confluence.terracotta.org/display/docs/Operations+Guide
https://confluence.terracotta.org/display/release/FAQ
https://confluence.terracotta.org/display/docs/DSO+Technical+FAQ
https://confluence.terracotta.org/display/docs/Troubleshooting+Guide
https://confluence.terracotta.org/display/docs/Gotchas
https://confluence.terracotta.org/display/docs/Non-Portable+Classes
https://confluence.terracotta.org/display/docs/Migrating+From+Terracotta+DSO
https://confluence.terracotta.org/display/docs/Concept+and+Architecture+Guide
https://confluence.terracotta.org/display/docs/Web+App+Reference+Implementation
https://confluence.terracotta.org/display/docs/DSO+Data+Structures+Guide
https://confluence.terracotta.org/display/docs/Integrating+Terracotta+DSO
https://confluence.terracotta.org/display/docs/Clustering+the+Spring+Framework
https://confluence.terracotta.org/display/docs/Terracotta+Integration+Modules+Manual
https://confluence.terracotta.org/display/docs/AspectWerkz+Pattern+Language
https://confluence.terracotta.org/display/docs/Glossary
https://confluence.terracotta.org/display/docs/Terracotta+Documentation+Archive
https://confluence.terracotta.org/display/docs/Migrating+From+Terracotta+DSO
http://terracotta.org/documentation
https://confluence.terracotta.org/display/release/Home

Terracotta Distributed Cache
Introduction
How to Implement and Configure
A Simple Distributed Cache
Terracotta Distributed Cache in a Reference Application

Introduction

The Terracotta Distributed Cache is an interface providing a simple distributed eviction solution for map elements. The Distributed Cache, implemented
with the Terracotta Integration Module (TIM) , provides a number of advantages over more complex solutions:tim-distributed-cache

Simple – API is easy to understand and code against.
Distributed – Eviction is distributed along with data to maintain coherence.
Standard – Data eviction is based on standard expiration metrics.
Lightweight – Implementation does not hog resources.
Efficient – Optimized for a clustered environment to minimize faulting due to low locality of reference.
Fail-Safe – Data can be evicted even if written by a failed node or after all nodes have been restarted.
Self-Contained – Implements a Map for optional ready-to-use distributed cache.
Native – Designed for Terracotta to eliminate integration issues.

How to Implement and Configure

Under the appropriate conditions, the Terracotta Distributed Cache can be used in any Terracotta cluster. If your application can use the Distributed
Cache's built-in Map implementation for a cache, you can avoid having to customize your own data structure. See for #A Simple Distributed Cache
instructions on using the Distributed Cache with the provided Map implementation.

Requirements

To ensure that the Terracotta Distributed Cache performs well and without errors, check the following requirements.

Classpath Requirements

The TIMs and must be on your application's classpath at runtime. See tim-distributed-cache tim-concurrent-collections #Installing the TIM
to learn how to install .tim-distributed-cache

Eviction Parameters

The Terracotta Distributed Cache has the following eviction parameters:

D E P R E C A T E D

The Terracotta Distributed Cache based on the Terracotta Integration Module (TIM) has been in favor tim-distributed-cache deprecated
of the

.

Error rendering macro 'html'

Notify your Confluence administrator that "Bob Swift Atlassian Add-ons - HTML" requires a valid license. Reason: EXPIRED

When you install , is automatically installed.tim-distributed-cache tim-concurrent-collections

Time to Live
The Time to Live (TTL) value determines the maximum amount of time an object can remain in the cache before becoming eligible for eviction, regardless
of other conditions such as use.
Time to Idle
The Time to Idle (TTI) value determines the maximum amount of time an object can remain idle in the cache before becoming eligible for eviction. TTI is
reset each time the object is used.
Target Max In-Memory Count
The in-memory count is the maximum number of elements allowed in a region in any one client (any one application server). If this target is exceeded,
eviction occurs to bring the count within the allowed target. The flexibility of using a target as opposed to hard limit serves to improve concurrency. 0
means no eviction takes place (infinite size is allowed).
Target Max Total Count
The total count is the maximum total number of elements allowed for a region in all clients (all application servers). If this target is exceeded, eviction
occurs to bring the count within the allowed target. The flexibility of using a target as opposed to hard limit serves to improve concurrency. 0 means no
eviction takes place (infinite size is allowed).

To maximize cache performance benefits, configure and tune these parameters to optimize data retention and eviction behavior. To learn how to configure
the Terracotta Distributed Cache eviction parameters, see .#Usage Pattern

JDK Version

The Terracotta Distributed Cache requires JDK 1.5 or greater.

Installing the TIM

To use the Terracotta Distributed Cache, you must both install and include the evictor JAR file in your classpath.tim-distributed-cache

To install the TIM, run the following command from ${TERRACOTTA_HOME}:

UNIX/Linux

[PROMPT] bin/tim-get.sh install tim-distributed-cache

Microsoft Windows

[PROMPT] bin\tim-get.bat install tim-distributed-cache

You should see output that appears similar to the following:

Installing tim-distributed-cache 1.3.0-SNAPSHOT and dependencies...
 INSTALLED: tim-distributed-cache 1.3.0-SNAPSHOT - Ok
 INSTALLED: tim-concurrent-collections 1.3.0-SNAPSHOT - Ok

Run the following command from ${TERRACOTTA_HOME} to update the Terracotta configuration file (by default):tc-config.xml

UNIX/Linux

[PROMPT] bin/tim-get.sh upgrade <path/to/Terracotta/configuration/file>

Microsoft Windows

[PROMPT] bin\tim-get.bat upgrade <path\to\Terracotta\configuration\file>

For more information about installing and updating TIMs, see the .TIM Update Center

Locking Requirements

Terracotta automatically provides locking for read (get) and write (put) operations on the distributed map. These locks last for the duration of the get or put
operation.

Mutating an object obtained from the distributed map requires a read/write lock to avoid race conditions and potential corruption to data.

For example, assume a distributed map has an element <k1, v1> in it. The following operation does not require explicit locking:

https://confluence.terracotta.org/display/docs/tim-get

myObject = getFromMyDistributedMap(k1); // Terracotta provides a lock for the duration of
getFromMyDistributedMap().

Adding a new element to the map also does not require explicit locking:

putIntoMyDistributedMap(k2, v2); // Terracotta provides a lock for the duration of putIntoMyDistributedMap().

However, the following operation a read/write lock:requires

myNewObject = myMutator(myObject); // myObject should be locked until it is put back into the map.

Note the following:

To be shared across the cluster, the field must be declared a Terracotta root or its class (its type) must be instrumented.myObject
Cluster-wide locking (Terracotta locking) must be present when changes . There are several ways to implement myMutator() myObject
Terracotta locking.
To gain visibility into the cluster and better understand how the map and object graphs are being clustered, use the Terracotta Developer
Console's Object Browser.
Use the Terracotta Developer Console's Lock Profiler to see what locks are being used and their usage patterns.

A Simple Distributed Cache

Clustered applications with a system of record (SOR) on the backend can benefit from a distributed cache that manages certain data in memory while
reducing costly application-SOR interactions. However, using a cache can introduce increased complexity to software development, integration, operation,
and maintenance.

The Terracotta Distributed Cache includes a distributed Map that can be used as a simple distributed cache. This cache uses the Terracotta Distributed
Cache, incorporating all of its benefits. It also takes both established and innovative approaches to the caching model, solving performance and complexity
issues by:

obviating SOR commits for data with a limited lifetime;
making cached application data available in-memory across a cluster of application servers;
offering standard methods for working with cache elements and performing cache-wide operations;
incorporating concurrency for readers and writers;
utilizing a flexible map implementation to adapt to more applications;
minimizing inter-node faulting to speed data operations.

Structure and Characteristics

The Terracotta Distributed Cache is an interface incorporating a distributed map (an extension of ConcurrentMap in the JDK) with standard map
operations. For more information about the Terracotta Distributed Cache, see:

Terracotta Distributed Cache Javadoc
DistributedCache Interface

Usage Pattern

A typical usage pattern for the Terracotta Distributed Cache is shown in the MyStuff class below. The next section contains a full list of configuration
parameters available to .CacheConfigFactory

For more information on locks, Terracotta roots, and instrumenting classes, see the following resources:

The section in Configuring TerracottaResolving UnlockedSharedObjectException - Configuring Locking
Sections on locks, Terracotta roots, and instrumenting classes in the and in the Concept and Architecture Guide Configuration Guide

.and Reference

For more information on the Terracotta Developer Console, see the .console guide

getValues() is not provided, but an iterator can be obtained for Set<K> to obtain values.

http://forge.terracotta.org/snapshots/projects/tim-distributed-cache-parent/apidocs/index.html
http://forge.terracotta.org/snapshots/projects/tim-distributed-cache-parent/apidocs/org/terracotta/cache/DistributedCache.html
https://confluence.terracotta.org/display/docs/Configuring+DSO
https://confluence.terracotta.org/display/docs/Concept+and+Architecture+Guide
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference
https://confluence.terracotta.org/display/docs/Configuration+Guide+and+Reference
https://confluence.terracotta.org/display/docs/Terracotta+Developer+Console

import org.terracotta.cache.CacheConfigFactory;
import org.terracotta.cache.DistributedCache;

public class MyStuff {

 // Mark as Terracotta root
 private DistributedCache<String, Stuff> sharedCache;

 public MyStuff() {
 if(sharedCache == null) {
DistributedCache<String, Stuff> newCache =
CacheConfigFactory.newConfig()
 .setMaxTTLSeconds(6*60 * 60) // Regardless of use, remove after 6 hours
 .setMaxTTISeconds(30*60) // Remove after 30 minutes of none-use.
 .newCache();

 // Set root - if this doesn't succeed, shutdown the newCache as it has a worthless background evictor
thread.
 sharedCache = newCache;
 if(sharedCache != newCache) {
 newCache.shutdown();
 }
 }

 public void putStuff(String key, Stuff stuff) {
 sharedCache.put(key, stuff);
 }

 public Stuff getStuff(String key) {
 return sharedCache.get(key);
 }
}

Cache Configuration Parameters

The configuration parameters that can be set through are summarized in the following table.CacheConfigFactory

Config
property

Default
value

Description

name "Distribute
d Map"

A descriptive string used in log messages and evictor thread names.

maxTTISeco
nds

0 Time To Idle - the maximum amount of time (in seconds) an item can be in the map unused before expiration; 0 means never expire due to
TTI.

maxTTLSeco
nds

0 Time To Live - the maximum amount of time (in seconds) an item may be in the map regardless of use before expiration; 0 means never
expire due to TTL.

orphanEvictio
nEnabled

true Determines whether "orphaned" values (values no longer local to any node) are evicted.

orphanEvictio
nPeriod

4 Number of times to run local eviction between doing orphan eviction.

loggingEnabl
ed

false Basic distributed-map logging messages saved to the Terracotta logs.

targetMaxInM
emoryCount

0 Target maximum number of values stored in memory for a region on any Terracotta client (application server). If target is exceeded,
elements are flushed to a Terracotta server instance but not evicted. The default of 0 gives elements an infinite lifetime.

targetMaxTot
alCount

0 Target maximum number of values stored for a region in the cluster. If the target is exceeded, elements are evicted to bring the total back
under the limit. The default of 0 gives elements an infinite lifetime.

Usage Example

The following is an example of a cache that implements the Terracotta distributed cache:

import org.terracotta.cache.*;
import static org.terracotta.cache.CacheConfigFactory.*;

DisributedCache<String,String> cache = CacheConfigFactory.newConfig()
.setMaxTTLSeconds(10)
.setMaxTTISeconds(5)
.newCache();

// start() method not needed; start is automatic.

cache.put("Rabbit", "Carrots");
cache.put("Dog", "Bone");
cache.put("Owl", "Mouse");
// wait 3 seconds
cache.get("Rabbit");

// wait 2 seconds - expire Dog and Owl due to TTI
assert ! cache.containsKey("Dog");
assert ! cache.containsKey("Owl");
assert cache.containsKey("Rabbit");

// wait 5 seconds - expire Rabbit due to TTL
assert ! cache.containsKey("Rabbit");

Terracotta Distributed Cache in a Reference Application

The uses the Terracotta Distributed Cache to handle pending user registrations. This type of data has a "medium-term" Examinator reference application
lifetime which needs to be persisted long enough to give prospective registrants a chance to verify their registrations. If a registration isn't verified by the
time TTL is reached, it can be evicted from the cache. Only if the registration is verified is it written to the database.

The combination of Terracotta and the Terracotta Distributed Cache gives Examinator the following advantages:

The simple Terracotta Distributed Cache's API makes it easy to integrate with Examinator and to maintain and troubleshoot.
Medium-term data is not written to the database unnecessarily, improving application performance.
Terracotta persists the pending registrations so they can survive node failure.
Terracotta clusters (shares) the pending registration data so that any node can handle validation.

	Terracotta Distributed Cache

